Source code for torchdrug.models.kbgat

import torch
from torch import nn

from torchdrug import core, models, utils
from torchdrug.layers import functional
from torchdrug.core import Registry as R


[docs]@R.register("models.KBGAT") @utils.copy_args(models.GraphAttentionNetwork) class KnowledgeBaseGraphAttentionNetwork(models.GraphAttentionNetwork, core.Configurable): """ Knowledge Base Graph Attention Network proposed in `Learning Attention-based Embeddings for Relation Prediction in Knowledge Graphs`_. .. _Learning Attention-based Embeddings for Relation Prediction in Knowledge Graphs: https://arxiv.org/pdf/1906.01195.pdf Parameters: num_entity (int): number of entities num_relation (int): number of relations embedding_dim (int): dimension of embeddings hidden_dims (list of int): hidden dimensions max_score (float, optional): maximal score for triplets **kwargs """ def __init__(self, num_entity, num_relation, embedding_dim, hidden_dims, max_score=12, **kwargs): super(KnowledgeBaseGraphAttentionNetwork, self).__init__(embedding_dim, hidden_dims, embedding_dim, **kwargs) self.num_entity = num_entity self.num_relation = num_relation self.max_score = max_score self.linear = nn.Linear(self.output_dim, embedding_dim) self.output_dim = embedding_dim self.entity = nn.Parameter(torch.zeros(num_entity, embedding_dim)) self.relation = nn.Parameter(torch.zeros(num_relation, embedding_dim)) nn.init.uniform_(self.entity, -max_score / embedding_dim, max_score / embedding_dim) nn.init.uniform_(self.relation, -max_score / embedding_dim, max_score / embedding_dim)
[docs] def forward(self, graph, h_index, t_index, r_index, all_loss=None, metric=None): """ Compute the score for triplets. Parameters: graph (Graph): fact graph h_index (Tensor): indexes of head entities t_index (Tensor): indexes of tail entities r_index (Tensor): indexes of relations all_loss (Tensor, optional): if specified, add loss to this tensor metric (dict, optional): if specified, output metrics to this dict """ with graph.edge(): graph.edge_feature = self.relation[graph.edge_list[:, 2]].detach() output = super(KnowledgeBaseGraphAttentionNetwork, self).forward(graph, self.entity, all_loss, metric) entity = self.linear(output["node_feature"]) score = functional.transe_score(entity, self.relation, h_index, t_index, r_index) return self.max_score - score