Papers Implemented#
Graph Representation Learning#
Graph Neural Networks#
Convolutional Networks on Graphs for Learning Molecular Fingerprints
David Duvenaud, Dougal Maclaurin, Jorge Aguilera-Iparraguirre, Rafael Gómez-Bombarelli, Timothy Hirzel, Alán Aspuru-Guzik, Ryan P. Adams. NIPS 2015.
Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering
Michaël Defferrard, Xavier Bresson, Pierre Vandergheynst. NIPS 2016.
Semi-Supervised Classification with Graph Convolutional Networks
Thomas N. Kipf, Max Welling. ICLR 2017.
Neural Message Passing for Quantum Chemistry
Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, George E. Dahl. ICML 2017.
SchNet: A continuous-filter convolutional neural network for modeling quantum interactions
Kristof T. Schütt, Pieter-Jan Kindermans, Huziel E. Sauceda, Stefan Chmiela, Alexandre Tkatchenko, Klaus-Robert Müller. NeurIPS 2017.
-
Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, Yoshua Bengio. ICLR 2018.
Modeling Relational Data with Graph Convolutional Networks
Michael Schlichtkrull, Thomas N. Kipf, Peter Bloem, Rianne van den Berg, Ivan Titov, Max Welling. ESWC 2018.
How Powerful Are Graph Neural Nerworks?
Keyulu Xu, Weihua Hu, Jure Leskovec, Stefanie Jegelka. ICLR 2019.
Differentiable Graph Pooling#
Hierarchical Graph Representation Learning with Differentiable Pooling
Rex Ying, Jiaxuan You, Christopher Morris, Xiang Ren, William L. Hamilton, Jure Leskovec. NeurIPS 2018.
Spectral Clustering with Graph Neural Networks for Graph Pooling
Filippo Maria Bianchi, Daniele Grattarola, Cesare Alippi. ICML 2020.
Readout Layers#
Order Matters: Sequence to sequence for sets
Oriol Vinyals, Samy Bengio, Manjunath Kudlur
Normalization Layers#
PairNorm: Tackling Oversmoothing in GNNs
Lingxiao Zhao, Leman Akoglu. ICLR 2020.
Drug Discovery#
Pretrain Molecular Representations#
-
Fan-Yun Sun, Jordan Hoffman, Vikas Verma, Jian Tang. ICLR 2020.
Strategies for Pre-training Graph Neural Networks
Weihua Hu, Bowen Liu, Joseph Gomes, Marinka Zitnik, Percy Liang, Vijay Pande, Jure Leskovec. ICLR 2020.
De Novo Molecule Design#
Graph Convolutional Policy Network for Goal-Directed Molecular Graph Generation.
Jiaxuan You, Bowen Liu, Rex Ying, Vijay Pande, Jure Leskovec. NeurIPS 2018.
GraphAF: A Flow-based Autoregressive Model for Molecular Graph Generation.
Chence Shi, Minkai Xu, Zhaocheng Zhu, Weinan Zhang, Ming Zhang, Jian Tang. ICLR 2020.
Retrosynthesis#
A Graph to Graphs Framework for Retrosynthesis Prediction.
Chence Shi, Minkai Xu, Hongyu Guo, Ming Zhang, Jian Tang. ICML 2020.
Protein Representation Learning#
Evaluating Protein Transfer Learning with TAPE
Roshan Rao, Nicholas Bhattacharya, Neil Thomas, Yan Duan, Xi Chen, John Canny, Pieter Abbeel, Yun S Song. NeurIPS 2019.
SinusoidalPositionEmbedding
SelfAttentionBlock
ProteinResNetBlock
ProteinBERTBlock
ProteinResNet
ProteinLSTM
ProteinBERT
Is Transfer Learning Necessary for Protein Landscape Prediction?
Amir Shanehsazzadeh, David Belanger, David Dohan. arXiv 2020.
ProteinCNN
-
Alexander Rives, Joshua Meier, Tom Sercu, Siddharth Goyal, Zeming Lin, Jason Liu, Demi Guo, Myle Ott, C. Lawrence Zitnick, Jerry Ma, Rob Fergus. PNAS 2021.
Protein Representation Learning by Geometric Structure Pretraining
Zuobai Zhang, Minghao Xu, Arian Jamasb, Vijil Chenthamarakshan, Aurélie Lozano, Payel Das, Jian Tang. arXiv 2022.
GeometricRelationalGraphConv
GeometryAwareRelationalGraphNeuralNetwork
torchdrug.layers.geometry
Knowledge Graph Reasoning#
Translating Embeddings for Modeling Multi-relational Data
Antoine Bordes, Nicolas Usunier, Alberto García-Durán. NIPS 2013.
Embedding Entities and Relations for Learning and Inference in Knowledge Bases
Bishan Yang, Wen-tau Yih, Xiaodong He, Jianfeng Gao, Li Deng. ICLR 2015.
Complex Embeddings for Simple Link Prediction
Théo Trouillon, Johannes Welbl, Sebastian Riedel, Éric Gaussier, Guillaume Bouchard. ICML 2016.
Differentiable Learning of Logical Rules for Knowledge Base Reasoning
Fan Yang, Zhilin Yang, William W. Cohen. NIPS 2017.
SimplE Embedding for Link Prediction in Knowledge Graphs
Seyed Mehran Kazemi, David Poole. NeurIPS 2018.
RotatE: Knowledge Graph Embedding by Relational Rotation in Complex Space
Zhiqing Sun, Zhi-Hong Deng, Jian-Yun Nie, Jian Tang. ICLR 2019.
Learning Attention-based Embeddings for Relation Prediction in Knowledge Graphs
Deepak Nathani, Jatin Chauhan, Charu Sharma, Manohar Kaul. ACL 2019.