Source code for torchdrug.layers.readout

import torch
from torch import nn
from torch_scatter import scatter_mean, scatter_add, scatter_max, scatter_softmax


class Readout(nn.Module):

    def __init__(self, type="node"):
        super(Readout, self).__init__()
        self.type = type

    def get_index2graph(self, graph):
        if self.type == "node":
            input2graph = graph.node2graph
        elif self.type == "edge":
            input2graph = graph.edge2graph
        elif self.type == "residue":
            input2graph = graph.residue2graph
        else:
            raise ValueError("Unknown input type `%s` for readout functions" % self.type)
        return input2graph


[docs]class MeanReadout(Readout): """Mean readout operator over graphs with variadic sizes."""
[docs] def forward(self, graph, input): """ Perform readout over the graph(s). Parameters: graph (Graph): graph(s) input (Tensor): node representations Returns: Tensor: graph representations """ input2graph = self.get_index2graph(graph) output = scatter_mean(input, input2graph, dim=0, dim_size=graph.batch_size) return output
[docs]class SumReadout(Readout): """Sum readout operator over graphs with variadic sizes."""
[docs] def forward(self, graph, input): """ Perform readout over the graph(s). Parameters: graph (Graph): graph(s) input (Tensor): node representations Returns: Tensor: graph representations """ input2graph = self.get_index2graph(graph) output = scatter_add(input, input2graph, dim=0, dim_size=graph.batch_size) return output
[docs]class MaxReadout(Readout): """Max readout operator over graphs with variadic sizes."""
[docs] def forward(self, graph, input): """ Perform readout over the graph(s). Parameters: graph (Graph): graph(s) input (Tensor): node representations Returns: Tensor: graph representations """ input2graph = self.get_index2graph(graph) output = scatter_max(input, input2graph, dim=0, dim_size=graph.batch_size)[0] return output
class AttentionReadout(Readout): """Attention readout operator over graphs with variadic sizes.""" def __init__(self, input_dim, type="node"): super(AttentionReadout, self).__init__(type) self.input_dim = input_dim self.linear = nn.Linear(input_dim, 1) def forward(self, graph, input): index2graph = self.get_index2graph(graph) weight = self.linear(input) attention = scatter_softmax(weight, index2graph, dim=0) output = scatter_add(attention * input, index2graph, dim=0, dim_size=graph.batch_size) return output
[docs]class Softmax(Readout): """Softmax operator over graphs with variadic sizes.""" eps = 1e-10
[docs] def forward(self, graph, input): """ Perform softmax over the graph(s). Parameters: graph (Graph): graph(s) input (Tensor): node logits Returns: Tensor: node probabilities """ input2graph = self.get_index2graph(graph) x = input - scatter_max(input, input2graph, dim=0, dim_size=graph.batch_size)[0][input2graph] x = x.exp() normalizer = scatter_add(x, input2graph, dim=0, dim_size=graph.batch_size)[input2graph] return x / (normalizer + self.eps)
[docs]class Sort(Readout): """ Sort operator over graphs with variadic sizes. Parameters: descending (bool, optional): use descending sort order or not """ def __init__(self, type="node", descending=False): super(Sort, self).__init__(type) self.descending = descending
[docs] def forward(self, graph, input): """ Perform sort over graph(s). Parameters: graph (Graph): graph(s) input (Tensor): node values Returns: (Tensor, LongTensor): sorted values, sorted indices """ input2graph = self.get_index2graph(graph) step = input.max(dim=0) - input.min(dim=0) + 1 if self.descending: step = -step x = input + input2graph * step sorted, index = x.sort(dim=0, descending=self.descending) sorted = sorted - input2graph * step return sorted, index
[docs]class Set2Set(Readout): """ Set2Set operator from `Order Matters: Sequence to sequence for sets`_. .. _Order Matters\: Sequence to sequence for sets: https://arxiv.org/pdf/1511.06391.pdf Parameters: input_dim (int): input dimension num_step (int, optional): number of process steps num_lstm_layer (int, optional): number of LSTM layers """ def __init__(self, input_dim, type="node", num_step=3, num_lstm_layer=1): super(Set2Set, self).__init__(type) self.input_dim = input_dim self.output_dim = self.input_dim * 2 self.num_step = num_step self.lstm = nn.LSTM(input_dim * 2, input_dim, num_lstm_layer) self.softmax = Softmax(type)
[docs] def forward(self, graph, input): """ Perform Set2Set readout over graph(s). Parameters: graph (Graph): graph(s) input (Tensor): node representations Returns: Tensor: graph representations """ input2graph = self.get_index2graph(graph) hx = (torch.zeros(self.lstm.num_layers, graph.batch_size, self.lstm.hidden_size, device=input.device),) * 2 query_star = torch.zeros(graph.batch_size, self.output_dim, device=input.device) for i in range(self.num_step): query, hx = self.lstm(query_star.unsqueeze(0), hx) query = query.squeeze(0) product = torch.einsum("bd, bd -> b", query[input2graph], input) attention = self.softmax(graph, product) output = scatter_add(attention.unsqueeze(-1) * input, input2graph, dim=0, dim_size=graph.batch_size) query_star = torch.cat([query, output], dim=-1) return query_star