Source code for torchdrug.datasets.alphafolddb

import os
import glob

from torchdrug import data, utils
from torchdrug.core import Registry as R


[docs]@R.register("datasets.AlphaFoldDB") @utils.copy_args(data.ProteinDataset.load_pdbs) class AlphaFoldDB(data.ProteinDataset): """ 3D protein structures predicted by AlphaFold. This dataset covers proteomes of 48 organisms, as well as the majority of Swiss-Prot. Statistics: See https://alphafold.ebi.ac.uk/download Parameters: path (str): path to store the dataset species_id (int, optional): the id of species to be loaded. The species are numbered by the order appeared on https://alphafold.ebi.ac.uk/download (0-20 for model organism proteomes, 21 for Swiss-Prot) split_id (int, optional): the id of split to be loaded. To avoid large memory consumption for one dataset, we have cut each species into several splits, each of which contains at most 22000 proteins. verbose (int, optional): output verbose level **kwargs """ urls = [ "https://ftp.ebi.ac.uk/pub/databases/alphafold/v2/UP000006548_3702_ARATH_v2.tar", "https://ftp.ebi.ac.uk/pub/databases/alphafold/v2/UP000001940_6239_CAEEL_v2.tar", "https://ftp.ebi.ac.uk/pub/databases/alphafold/v2/UP000000559_237561_CANAL_v2.tar", "https://ftp.ebi.ac.uk/pub/databases/alphafold/v2/UP000000437_7955_DANRE_v2.tar", "https://ftp.ebi.ac.uk/pub/databases/alphafold/v2/UP000002195_44689_DICDI_v2.tar", "https://ftp.ebi.ac.uk/pub/databases/alphafold/v2/UP000000803_7227_DROME_v2.tar", "https://ftp.ebi.ac.uk/pub/databases/alphafold/v2/UP000000625_83333_ECOLI_v2.tar", "https://ftp.ebi.ac.uk/pub/databases/alphafold/v2/UP000008827_3847_SOYBN_v2.tar", "https://ftp.ebi.ac.uk/pub/databases/alphafold/v2/UP000005640_9606_HUMAN_v2.tar", "https://ftp.ebi.ac.uk/pub/databases/alphafold/v2/UP000008153_5671_LEIIN_v2.tar", "https://ftp.ebi.ac.uk/pub/databases/alphafold/v2/UP000000805_243232_METJA_v2.tar", "https://ftp.ebi.ac.uk/pub/databases/alphafold/v2/UP000000589_10090_MOUSE_v2.tar", "https://ftp.ebi.ac.uk/pub/databases/alphafold/v2/UP000001584_83332_MYCTU_v2.tar", "https://ftp.ebi.ac.uk/pub/databases/alphafold/v2/UP000059680_39947_ORYSJ_v2.tar", "https://ftp.ebi.ac.uk/pub/databases/alphafold/v2/UP000001450_36329_PLAF7_v2.tar", "https://ftp.ebi.ac.uk/pub/databases/alphafold/v2/UP000002494_10116_RAT_v2.tar", "https://ftp.ebi.ac.uk/pub/databases/alphafold/v2/UP000002311_559292_YEAST_v2.tar", "https://ftp.ebi.ac.uk/pub/databases/alphafold/v2/UP000002485_284812_SCHPO_v2.tar", "https://ftp.ebi.ac.uk/pub/databases/alphafold/v2/UP000008816_93061_STAA8_v2.tar", "https://ftp.ebi.ac.uk/pub/databases/alphafold/v2/UP000002296_353153_TRYCC_v2.tar", "https://ftp.ebi.ac.uk/pub/databases/alphafold/v2/UP000007305_4577_MAIZE_v2.tar", "https://ftp.ebi.ac.uk/pub/databases/alphafold/v2/swissprot_pdb_v2.tar", "https://ftp.ebi.ac.uk/pub/databases/alphafold/v2/UP000001631_447093_AJECG_v2.tar", "https://ftp.ebi.ac.uk/pub/databases/alphafold/v2/UP000006672_6279_BRUMA_v2.tar", "https://ftp.ebi.ac.uk/pub/databases/alphafold/v2/UP000000799_192222_CAMJE_v2.tar", "https://ftp.ebi.ac.uk/pub/databases/alphafold/v2/UP000094526_86049_9EURO1_v2.tar", "https://ftp.ebi.ac.uk/pub/databases/alphafold/v2/UP000274756_318479_DRAME_v2.tar", "https://ftp.ebi.ac.uk/pub/databases/alphafold/v2/UP000325664_1352_ENTFC_v2.tar", "https://ftp.ebi.ac.uk/pub/databases/alphafold/v2/UP000053029_1442368_9EURO2_v2.tar", "https://ftp.ebi.ac.uk/pub/databases/alphafold/v2/UP000000579_71421_HAEIN_v2.tar", "https://ftp.ebi.ac.uk/pub/databases/alphafold/v2/UP000000429_85962_HELPY_v2.tar", "https://ftp.ebi.ac.uk/pub/databases/alphafold/v2/UP000007841_1125630_KLEPH_v2.tar", # "https://ftp.ebi.ac.uk/pub/databases/alphafold/v2/UP000008153_5671_LEIIN_v2.tar", "https://ftp.ebi.ac.uk/pub/databases/alphafold/v2/UP000078237_100816_9PEZI1_v2.tar", "https://ftp.ebi.ac.uk/pub/databases/alphafold/v2/UP000000806_272631_MYCLE_v2.tar", # "https://ftp.ebi.ac.uk/pub/databases/alphafold/v2/UP000001584_83332_MYCTU_v2.tar", "https://ftp.ebi.ac.uk/pub/databases/alphafold/v2/UP000020681_1299332_MYCUL_v2.tar", "https://ftp.ebi.ac.uk/pub/databases/alphafold/v2/UP000000535_242231_NEIG1_v2.tar", "https://ftp.ebi.ac.uk/pub/databases/alphafold/v2/UP000006304_1133849_9NOCA1_v2.tar", "https://ftp.ebi.ac.uk/pub/databases/alphafold/v2/UP000024404_6282_ONCVO_v2.tar", "https://ftp.ebi.ac.uk/pub/databases/alphafold/v2/UP000002059_502779_PARBA_v2.tar", # "https://ftp.ebi.ac.uk/pub/databases/alphafold/v2/UP000001450_36329_PLAF7_v2.tar", "https://ftp.ebi.ac.uk/pub/databases/alphafold/v2/UP000002438_208964_PSEAE_v2.tar", "https://ftp.ebi.ac.uk/pub/databases/alphafold/v2/UP000001014_99287_SALTY_v2.tar", "https://ftp.ebi.ac.uk/pub/databases/alphafold/v2/UP000008854_6183_SCHMA_v2.tar", "https://ftp.ebi.ac.uk/pub/databases/alphafold/v2/UP000002716_300267_SHIDS_v2.tar", "https://ftp.ebi.ac.uk/pub/databases/alphafold/v2/UP000018087_1391915_SPOS1_v2.tar", # "https://ftp.ebi.ac.uk/pub/databases/alphafold/v2/UP000008816_93061_STAA8_v2.tar", "https://ftp.ebi.ac.uk/pub/databases/alphafold/v2/UP000000586_171101_STRR6_v2.tar", "https://ftp.ebi.ac.uk/pub/databases/alphafold/v2/UP000035681_6248_STRER_v2.tar", "https://ftp.ebi.ac.uk/pub/databases/alphafold/v2/UP000030665_36087_TRITR_v2.tar", "https://ftp.ebi.ac.uk/pub/databases/alphafold/v2/UP000008524_185431_TRYB2_v2.tar", # "https://ftp.ebi.ac.uk/pub/databases/alphafold/v2/UP000002296_353153_TRYCC_v2.tar", "https://ftp.ebi.ac.uk/pub/databases/alphafold/v2/UP000270924_6293_WUCBA_v2.tar" ] md5s = [ "4cd5f596ebfc3d45d9f6b647dc5684af", "b89bee5507f78f971417cc8fd75b40f7", "a6459a1f1a0a22fbf25f1c05c2889ae3", "24dfba8ab93dbf3f51e7db6b912dd6b4", "6b81b3086ed9e57e04a54f148ecf974c", "a50f4fd9f581c89e79e1b2857e54b786", "fdd16245769bf1f7d91a0e285ac00e52", "66b9750c511182bc5f8ee71fe2ab2a17", "5dadeb5aac704025cac33f7557794858", "99b22e0f050d845782d914becbfe4d2f", "da938dfae4fabf6e144f4b5ede5885ec", "2003c09d437cfb4093552c588a33e06d", "fba59f386cfa33af3f70ae664b7feac0", "d7a1a6c02213754ee1a1ffb3b41ad4ba", "8a0e8deadffec2aba3b7edd6534b7481", "1854d0bbcf819de1de7b0cfdb6d32b2e", "d9720e3809db6916405db096b520c236", "6b918e9e4d645b12a80468bcea805f1f", "ed0eefe927eb8c3b81cf87eaabbb8d6e", "051369e0dc8fed4798c8b2c68e6cbe2e", "b05ff57164167851651c625dca66ed28", "68e7a6e57bd43cb52e344b3190073387", "75d027ac7833f284fda65ea620353e8a", "7d85bb2ee4130096a6d905ab8d726bcc", "63498210c88e8bfb1a7346c4ddf73bb1", "5bf2211304ef91d60bb3838ec12d89cd", "4981758eb8980e9df970ac6113e4084c", "322431789942595b599d2b86670f41b3", "35d7b32e37bcc23d02b12b03b1e0c093", "1b8847dd786fa41b5b38f5e7aa58b813", "126bdbe59fa82d55bfa098b710bdf650", "6c6d3248ed943dd7137637fc92d7ba37", "532203c6877433df5651b95d27685825", "6e7112411da5843bec576271c44e0a0a", "0e4f913a9b4672b0ad3cc9c4f2de5c8d", "a138d0060b2e8a0ef1f90cf3ab7b7ca0", "04d491dd1c679e91b5a2f3b9f14db555", "889c051e39305614accdff00414bfa67", "cd87cf24e5135c9d729940194ccc65c8", "75eb8bfe866cf3040f4c08a566c32bc1", "fd8e6ddb9c159aab781a11c287c85feb", "b91a2e103980b96f755712f2b559ad66", "26187d09b093649686d7c158aa4fd113", "62e16894bb4b8951a82befd24ad4ee21", "85c001df1d91788bf3cc1f97230b1dac", "91a25af808351757b101a8c9c787db9e", "8b3e8645cc4c2484c331759b9d1df5bc", "e8a76a6ab290e6743233510e8d1eb4a5", "38280bd7804f4c060b0775c4abed9b89" ] species_nsplit = [ 2, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 20, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, #1, 1, 1, 1, 1 ] split_length = 22000 def __init__(self, path, species_id=0, split_id=0, verbose=1, **kwargs): path = os.path.expanduser(path) if not os.path.exists(path): os.makedirs(path) self.path = path species_name = os.path.basename(self.urls[species_id])[:-4] if split_id >= self.species_nsplit[species_id]: raise ValueError("Split id %d should be less than %d in species %s" % (split_id, self.species_nsplit[species_id], species_name)) self.processed_file = "%s_%d.pkl.gz" % (species_name, split_id) pkl_file = os.path.join(path, self.processed_file) if os.path.exists(pkl_file): self.load_pickle(pkl_file, verbose=verbose, **kwargs) else: tar_file = utils.download(self.urls[species_id], path, md5=self.md5s[species_id]) pdb_path = utils.extract(tar_file) gz_files = sorted(glob.glob(os.path.join(pdb_path, "*.pdb.gz"))) pdb_files = [] index = slice(split_id * self.split_length, (split_id + 1) * self.split_length) for gz_file in gz_files[index]: pdb_files.append(utils.extract(gz_file)) self.load_pdbs(pdb_files, verbose=verbose, **kwargs) self.save_pickle(pkl_file, verbose=verbose) def get_item(self, index): if getattr(self, "lazy", False): protein = data.Protein.from_pdb(self.pdb_files[index], self.kwargs) else: protein = self.data[index].clone() if hasattr(protein, "residue_feature"): with protein.residue(): protein.residue_feature = protein.residue_feature.to_dense() item = {"graph": protein} if self.transform: item = self.transform(item) return item def __repr__(self): lines = [ "#sample: %d" % len(self), ] return "%s(\n %s\n)" % (self.__class__.__name__, "\n ".join(lines))